Damping of The Room LF Acoustics

Reza Kashani, Ph.D.

Professor of Mechanical Engineering The University of Dayton

Jim Wischmeyer

President Modular Sound

November 6th, 2010 129th AES Convention San Francisco, CA

Outline: LF Room Acoustics

- Rooms excessively amplify sound at certain frequencies
 - Dictated by room size and geometry
 - Standing waves (acoustic resonances/modes)
 - Waves whose oscillation is continuously reinforced by their own reflections
 - Rooms have many resonances
 - The LF resonances are
 - » discrete
 - » distinct
 - Typically, the first resonant mode accommodates most of the acoustic energy build up in the room
 - In a typical listening room the resonant frequencies of standing waves fall in the bass frequency region

Outline: Solutions

- Dissipative remedies, using sound absorbing material, are ineffective at low frequencies
- Reactive devices (bass traps) are commonly used for absorbing LF acoustic energy
 - Different passive and active bass trapping techniques will be talked about
 - Their advantages/disadvantages discussed
- Damping measurement/quantification
 - Different techniques for low and high frequencies
- The tutorial will conclude by comparing/contrasting damping with equalizing

Wave Propagation

- Acoustic waves
 - Pressure (and particle velocity) distribution that propagates through any medium
 - Particles moving back and forth creating regions of compression and refraction
 - Produces the sensation of sound
 - 3-dimensional wave motion
 - Spherical

» Planar

- Spatial and time dependant
 - Wave equation:
 - » In Cartesian coordinates

Standing Waves

- With no obstacle/boundaries impeding the propagation of acoustic waves, they moves in one direction only
 - Free field propagation
- In presence of boundaries, i.e., impedance change, a percentage of the wave energy gets reflected back
 - Percentage: between 0 to 100%
 - Depending on how much absorption occurs at the boundary
 - Common in enclosed spaces
- At certain discrete frequencies, the reflected wave overlaps the original wave, exactly, creating a standing wave/acoustic resonance
 - Occurs at all frequencies, **low**, mid and high
 - The wavelength of the standing waves between two parallel walls
 - λ_1 =2L, λ_2 =L, λ_3 =.66L,
 - $f=c/\lambda$

Mode Shapes and Frequencies

- For a rectangular shoe-box room, with rigid walls the natural frequencies and the shape of the modes can readily be evaluated
 - Excel, Matlab,...

$$freq = \frac{c}{2} \left[\left(\frac{n_x}{l_x} \right)^2 + \left(\frac{n_y}{l_y} \right)^2 + \left(\frac{n_z}{l_z} \right)^2 \right]^{\frac{1}{2}}$$

$$shapes = (\cos k_x x)(\cos k_y y)(\cos k_z z)$$

$$k_x = \frac{n_x \pi}{l_x}, \quad k_y = \frac{n_y \pi}{l_y}, \quad k_z = \frac{n_z \pi}{l_z}$$

where $n_x, n_y, n_z = 0, 1, 2, ...$

 For more irregular rooms numerical tools are used to find the frequencies and mode shapes

Finite Element Analysis

- FEA tools can be used in analyzing the modal response of a room with
 - Any geometry
 - Any boundary condition
 - Any obstacle/equipment in the room
- Prior to having the room built
 - Such analyses will aid in
 - Proper dimensioning of the room
 - Placement of LF acoustic treatments
 - Placement of audio equipment

Analysis Steps

- Model the space geometry
- -Mesh the model
 - Discretize it to many small pieces (finite elements)
- Apply boundary conditions
- Solve
 - Modal analysis
 - Frequency response analysis
- Post-process the results

Irregular Rooms

 Irregularities in a room change the shapes and frequencies of the standing waves/modes

Obstacles/Equipment in a Room

Resonating Walls

- A resonating wall can affect the modal character of the room
 - With no damping built into the resonating wall, it can split an acoustic mode into 2 modes
 - 34 Hz mode is split into 27 and 40 Hz modes
 - Incorporating some damping into the resonating wall, turns the wall into a tuned absorber
 - This is the principle behind panel absorption

The Effects of Standing Waves

- Standing waves (acoustic modes) make a room to accommodate the excessive reverberation of sound at certain frequencies.
 - This results in the *reinforcing* and *lingering* of certain tones, long after they should have ceased
 - This is because the original oscillations of standing waves are continuously reinforced by their own reflections
 - standing waves are discrete at low frequencies
 - Lower modes normally carry most of the energy
 - The wavelength of these modes match the dimensions of smaller rooms
 - Resonant frequencies: 20 to 80 Hz
 - Lower modes alter the natural sound at these frequencies dramatically making the sound *boomy* and tonal

Frequency Response Function (FRF)

- Most commonly used tool in identifying room modes
 - **Definition:** output/input over various frequencies in any linear system is called frequency response function
 - Also called transfer function by practitior
 - Measured at steady state
 - A complex quantity
 - Magnitude
 - Phase
 - In acoustics
 - Output: pressure or particle velocity
 - Measured by a microphone or hot wire
 - Input: rate of change of volume velocity
 - Normally created by a loudspeaker
 - Commonly used in low-frequency acoustics
 - Peaks in FRF indicate resonances

FRF Evaluation Techniques

- Analytical
 - Used when an analytical model (partial differential equation) for the system is available
- Numerical
 - Used when a numerical (e.g., finite element) model for the system is available
- Experimental
 - Most commonly used technique
 - Requires the measurement of the output and input
 - Fast Fourier Transform (FFT) algorithm is used in evaluation of experimental FRFs
- $FRF(\omega) = \frac{FFT(O)}{FFT(I)}$ $FRF(\omega) = \frac{P_{oi}(O, I)}{P_{ii}(I)}$

Dealing with LF Resonance

 Note that resonance is caused by reflection of a wave upon itself

 $P_i + P_r = P_i + R^* P_i$, where R is the reflection coefficient

- R=0 eliminates the resonance
 - Walls need to be removed!

- This is why resonance exists in enclosed, not open, spaces
- Next best solution is making R small
 - Reflection=1-|Absorption|²
 - Increasing absorption abates the resonance
 - Dissipating acoustic energy
 - » Acoustic damping

Frequency Response and Damping

- Peaks in a frequency response is an indication of acoustic resonances (standing waves)
 - The sharpness of a peak indicates lack of damping in that standing wave (mode)
 - Normally the first mode is the one in need of most damping
 - Absorbing the energy of the first mode lowers the boominess and lingering of sound associated with that mode
 - Addition of damping to that mode is exhibited by flattening it in the frequency response

Sound Absorption/Damping

- Acoustic energy
 - Kinetic energy, KE
 - Particle velocity
 - Potential energy, PE
 - Acoustic pressure
 - Total Energy
 - KE+PE

- Where one is maximum the other one is zero

Sound absorbing material absorb KE energy

- Their fibrous nature entangles the sound, dissipating its KE
 - To be effective they need to be placed in the region of high particle velocity
- Edge effect also contributes to absorption

Sound Absorbing Material Effectiveness

- Facts:
 - Acoustic modes have zero velocity at the walls
 - Their velocity is maximum ¼ wavelength away from the walls
 Middle of the room for the first mode
 - Sound absorbing material, the main element n dissipative absorbers, are normally installed on the walls
 - To have space left in the room, the thickness of sound absorbing material should be reasonable
- Although very effective at high frequencies, dissipative absorbers are not good dampening the LF standing waves of a room
 Note that the wavelength of a 25 Hz resonance is around 50 ft

Reactive Absorbers

- Absorbers of any kind are commonly placed close to or on the walls/surfaces
 - That is where velocity is zero/small but pressure is maximum/large
- Reactive absorbers are damping mechanism that
 - Convert PE energy (pressure) to KE (velocity)
 - Dissipate KE
- Commonly used reactive absorbers
 - Helmholtz resonators
 - Quarter wave tubes
 - Panel absorbers

Helmholtz Resonator

- Cavity
 - acting as spring
- Neck/throat
 - acting as mass
- Dissipation

- Turbulence in the neck and neck to cavity transition
- Sound absorbing material
 - Placed next to the neck in the cavity
- HR is similar to a spring mass dashpot system
 - Resonate at single frequency; a tuned device
 - Whistle caused by blowing in a bottle is a tone at this frequency

$$\omega_n = \sqrt{\frac{1}{IC}}$$
 $I = (a)$

I =(air density)*(neck length)/(neck area) C=(cavity volume)/[(air density)(speed of sound)^2]

Cavity Backed Perforated Panels

• A number of Helmholtz resonators with individual necks and common cavity

- The backing volume acts as the cavity
- The perforations act as necks
- A tuned device
 - Similar to a Helmholtz resonator, perforated panels can be viewed as a single resonance device
 - Acceptable assumption up to a certain frequency
 - Commonly used in aircraft engines

Panel Absorbers

- Panels/plates have many structural resonances
 - Sheet metal, plywood, etc.
 - Backed by a cavity, to add stiffness
 - Cavity houses sound absorbing material
- The first structural resonance of the panel is tuned to a target acoustic mode of a room
 - The acoustic pressure pulsation causes the panel to vibrate at resonance
 - The panel convert the acoustic PE into acoustic KE
 - KE is dissipated in the sound absorbing material

Issues with Reactive Absorbers

- The tuning of such devices is half the story
- The other half is the size of such devices
 - A tiny Helmholtz resonator and a very large one can have the same resonant frequency
 - This does not mean that they both have the same effectiveness
 - The low frequency resonance of standing waves requires large reactive devices
 - Bulky when tuned to low frequencies
 - Once designed and tuned to a room, can not be used in another room with different geometry
 - The higher order resonant frequencies of these devices might introduce undesirable effects
- Mode splitting
 - With not enough damping in the reactive absorber, the target mode gets splitted
 - Energy is not dissipated, just re-distributed

Impedance of an Absorber

U

 $Z = \frac{p}{q} = \frac{p}{uA}$

- Acoustic impedance of a surface
 - Specific acoustic Impedance
 - Complex ٠
 - Frequency dependant
- Semi-empirical impedance models
- Measured impedance
 - Pressure-Velocity measurem
 - PU probe
 - In-situ measurement
 - Pressure-Pressure measurement
 - 2 microphone technique
- Impedance can be used as the
 - Measure of sound absorption
 - Boundary condition in finite element model of the room

--- U=2.5 m/s

Absorption Measurement

- Random incidence (reverberant field) measurement
 - Measurement is done in a reverberant room with nonparallel walls in which diffused sound field is generated
 - Standards such as ASTM C423 are used
 - Suitable for characterizing mid to high frequencies absorbers
- Normal incidence measurement
 - Measured by placing the face of the absorber at one end of an

- impedance tube with planar, 1D wave propagation
 - Standards: ISO 10534-2, ASTM E-1050 and JIS 1405-2
 - Hardware and software for measuring the frequency-dependent absorption coefficient, reflection coefficient, and acoustic impedance
- Suitable for characterizing low-frequency absorbers

Active Acoustic Absorbers

- Reactive tuned absorbers are commonly used to add damping to LF modes
 - Large in size
 - Not re-tunable
- Active reactive absorbers
 - A powered subwoofer radiating in response to the measured pressure
 - Nearly-collocated feedback control
 - A small microphone as sensor
 - Targets one (or two) LF mode(s)
- Size of a small, subwoofer
 - Low power demand
 - Robust, low-order, tunable and retunable
- Placement
 - Where it couples effectively with the target mode(s)
 - At a high pressure location of the target mode
- A true damping solution
 - Not equalization

Simulation of a Small Room

- At low frequencies the modes are discrete
 - The modal density increases with frequency

FE Modal Analysis

Corner 3

BLACK - CONTROLLER OFF BLUE - CONTROLLER ON OPTIMIZED RED - CONTROLLER ON OPTIMIZED FOR CORNER 2

electronic bass trap study 10/22/04 1:40:50 AM Dayton

Frequency (Hz)

Time Domain Data

BLUE - CONTROLLER OFF RED - CONTROLLER ON MIC AT LISTENING POSITION

electronic bass trap study .5 sec sinewave bursts 31 to 32 Hz

More Measurements

Blue: off Red: on

Software Tool

- Dynamic signal analysis
 - Uses the sound card
 - Plays the excitation noise thru the speaker output
 - Acquires the measured sound thru the mic input

Other Applications

- Vehicular applications
 - Can be used both as a bass trap inside large vehicles (SUVs and minivans) to
 - Abate boom noise
 - Enhance the listening experience
 - Passive absorbers for addressing LF modes in a vehicle would be too large

Other Applications

- Industrial application
 - Acoustic resonance in an enclosed industrial combustor

Damping vs. Equalizing

- Damping dissipates energy
 - Flattening a peak in the frequency response is because energy is being removed from the system at that resonance
 - Lowers ringing/lingering of sound at the target mode
 - Damping is a parameter of the system
 - Energy removal affects all the locations the same way

- EQ is a narrow-band volume control
 - Flattening a peak in the frequency response is not because energy is being removed from the system at that resonance
 - Does not affect the ringing/lingering of sound at the target mode
 - Not effective in room with live music

Summary

- Rooms excessively amplify sound at certain frequencies
 - Dictated by room size and geometry
 - Standing waves (acoustic resonances/modes)
 - Tonal lingering of sound
 - Passive tuned acoustic damping
 - Helmholtz resonator, panel absorbers, quarter wave tube, etc.
 - Active tuned acoustic damping
 - Small, and effective way of adding tuned damping to a room
 - Abates severe bass coloration
 - Tunable and re-tunable
 - Occasional and low power demand
 - One (or two) controllers can be tuned to add damping to one (or two) acoustic mode(s) of the room
 - Multiple controllers (circuits) are cascaded in parallel and share resources
 - Other applications
 - Vehicular and industrial
 - Quantifying the absorption of LF dampers
 - Impedance tube measurement