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Outline: LF Room Acoustics
• Rooms excessively amplify sound at certain 

frequencies
– Dictated by room size and geometry

• Standing waves (acoustic resonances/modes) 
– Waves whose oscillation is continuously reinforced by their 

own reflections 

• Rooms have many resonances
– The LF resonances are 

» discrete

» distinct 

– Typically, the first resonant mode accommodates most of the 
acoustic energy build up in the room

– In a typical listening room the resonant frequencies of 
standing waves fall in the bass frequency region



Outline: Solutions

• Dissipative remedies, using sound absorbing 
material, are ineffective at low frequencies 

• Reactive devices (bass traps) are commonly used 
for absorbing LF acoustic energy  
– Different passive and active bass trapping techniques 

will be talked about 
• Their advantages/disadvantages discussed 

• Damping measurement/quantification
– Different techniques for low and high frequencies

• The tutorial will conclude by 
comparing/contrasting damping with equalizing



Wave Propagation
• Acoustic waves

– Pressure (and particle velocity) distribution that 
propagates through any medium

• Particles moving back and forth creating regions of 
compression and refraction

• Produces the sensation of sound

• 3-dimensional wave motion
– Spherical 

» Planar

• Spatial and time dependant
– Wave equation:

» In Cartesian coordinates
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Standing Waves
• With no obstacle/boundaries impeding the propagation of 

acoustic waves, they moves in one direction only
– Free field propagation

• In presence of boundaries, i.e., impedance change, a 
percentage of the wave energy gets reflected back 
– Percentage: between 0 to 100% 

• Depending on how much absorption occurs at the boundary

– Common in enclosed spaces

• At certain discrete frequencies, the reflected wave overlaps 
the original wave, exactly, creating a standing 
wave/acoustic resonance
– Occurs at all frequencies, low, mid and high
– The wavelength of the standing waves between two parallel 

walls
• l1=2L, l2=L, l3=.66L, ….
• f= c/l



• For a rectangular shoe-box room, with rigid walls the natural 
frequencies and the shape of the modes can readily be 
evaluated

– Excel, Matlab,… 

• For more irregular rooms numerical tools
are used to find the frequencies and 
mode shapes

Mode Shapes and Frequencies
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– FEA tools can be used in analyzing the modal 
response of a room with 
• Any geometry 

• Any boundary condition

• Any obstacle/equipment in the room

–Prior to having the room built
• Such analyses will aid in 

– Proper dimensioning of the room 

– Placement of LF acoustic treatments

– Placement of audio equipment

Finite Element Analysis



–Model the space geometry

–Mesh the model

• Discretize it to many small 
pieces (finite elements)

– Apply boundary conditions

– Solve 
• Modal analysis

• Frequency response analysis

– Post-process the results

Analysis Steps



• Irregularities in a room change the 
shapes and frequencies of the standing 
waves/modes

Mode 1
34 Hz 35.2 Hz

Irregular Rooms



Mode 4 of a 

room 

without and 

with 

furniture/

equipment

Leather 

sofa

Audio 

equipment

Obstacles/Equipment in a Room



• A resonating wall can affect the modal 
character of the room

– With no damping built into the resonating wall, 
it can split an acoustic mode into 2 modes

• 34 Hz mode is split into 27 and 40 Hz modes

– Incorporating some damping into the 
resonating wall, turns the wall into a tuned 
absorber

• This is the principle behind panel absorption

27 Hz

40 Hz34 Hz

Resonating Walls



The Effects of Standing Waves
• Standing waves (acoustic modes) make a room to 

accommodate the excessive reverberation of sound 
at certain frequencies.  
– This results in the reinforcing and lingering of certain 

tones, long after they should have ceased  
– This is because the original oscillations of standing waves 

are continuously reinforced by their own reflections
– standing waves are discrete at low frequencies 

• Lower modes normally carry most of the energy
• The wavelength of these modes match the 

dimensions of smaller rooms 
• Resonant frequencies: 20 to 80 Hz

• Lower modes alter the natural sound at 
these frequencies dramatically making 
the sound boomy and tonal
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Frequency Response Function 
(FRF)

• Most commonly used tool in identifying room 
modes
• Definition: output/input over various frequencies in any 

linear system is called frequency response function
– Also called transfer function by practitioners
– Measured at steady state

• A complex quantity
– Magnitude
– Phase

– In acoustics 
• Output: pressure or particle velocity

– Measured by a microphone or hot wire
• Input: rate of change of volume velocity 

– Normally created by a loudspeaker

– Commonly used in low-frequency acoustics
• Peaks in FRF indicate resonances

LF HF



FRF Evaluation Techniques
• Analytical

– Used when an analytical model (partial differential 
equation) for the system is available

• Numerical
– Used when a numerical (e.g., finite element) model 

for the system is available

• Experimental
– Most commonly used technique

• Requires the measurement 
of the output and input

– Fast Fourier Transform (FFT) 
algorithm is used in evaluation 
of experimental FRFs
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Dealing with LF Resonance
• Note that resonance is caused by reflection of 

a wave upon itself

Pi+ Pr =Pi+R*Pi, where R is 
the reflection coefficient

• R=0 eliminates the resonance

– Walls need to be removed!

• This is why resonance exists in enclosed, not open, 
spaces

• Next best solution is making R small

– Reflection=1-|Absorption|2

• Increasing absorption abates the resonance
– Dissipating acoustic energy

» Acoustic damping



Frequency Response and Damping
• Peaks in a frequency response is an indication of 

acoustic resonances (standing waves)

– The sharpness of a peak 
indicates lack of damping
in that standing wave (mode)

– Normally the first mode is 
the one in need of most 
damping
• Absorbing the energy of the 

first mode lowers the boominess 
and lingering of sound 
associated with that mode

– Addition of damping to that 
mode is exhibited by flattening 
it in the frequency response
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Sound Absorption/Damping
• Acoustic energy

– Kinetic energy, KE
• Particle velocity

– Potential energy, PE

• Acoustic pressure

– Total Energy
• KE+PE

– Where one is maximum the other one is zero

– Sound absorbing material absorb KE energy
• Their fibrous nature entangles 

the sound, dissipating its KE

– To be effective they need to be 
placed in the region of high 
particle velocity

• Edge effect also contributes 
to absorption

a>1
low at low 

frequencies



Sound Absorbing Material Effectiveness

• Facts:

– Acoustic modes have zero velocity at the walls

• Their velocity is maximum ¼ wavelength away from the 
walls

– Sound absorbing material, the main element n 
dissipative absorbers, are normally installed on 
the walls

• To have space left in the room, the thickness of sound 
absorbing material should be reasonable

• Although very effective at high frequencies, 
dissipative absorbers are not good dampening the LF 
standing waves of a room Note that the wavelength of a 25 Hz 

resonance is around 50 ft 

Middle of the room for the first mode



Reactive Absorbers

• Absorbers of any kind are commonly placed close to 
or on the walls/surfaces

– That is where velocity is zero/small  but pressure is 
maximum/large

• Reactive absorbers are damping mechanism that

– Convert PE energy (pressure) to KE (velocity)

– Dissipate KE

• Commonly used reactive absorbers

– Helmholtz resonators

– Quarter wave tubes

– Panel absorbers



Helmholtz Resonator
• Cavity 

– acting as spring 

• Neck/throat 

– acting as mass   

• Dissipation

– Turbulence in the neck and neck to cavity transition

– Sound absorbing material

• Placed next to the neck in the cavity

• HR is similar to a spring mass dashpot system

– Resonate at single frequency; a tuned device

• Whistle caused by blowing in a bottle is a tone at this frequency

 
  

Sound absorbing 

material 
  

  

  Neck 

Cavity 

IC
n

1
 I =(air density)*(neck length)/(neck area)

C=(cavity volume)/[(air density)(speed of sound)^2]



Cavity Backed Perforated Panels
• A number of Helmholtz resonators with individual necks and 

common cavity

• The backing volume acts as the cavity

• The perforations act as necks

• A tuned device
– Similar to a Helmholtz resonator, 

perforated panels can be viewed 
as a single resonance device

• Acceptable assumption up to 
a certain frequency

– Commonly used in aircraft engines



Panel Absorbers 
• Panels/plates have many structural 

resonances

– Sheet metal, plywood, etc.

– Backed by a cavity, to add stiffness
• Cavity houses sound absorbing material

• The first structural resonance of 
the panel is tuned to a target 
acoustic mode of a room

– The acoustic pressure pulsation 
causes the panel to vibrate at 
resonance
• The panel convert the acoustic PE into 

acoustic KE 
– KE is dissipated in the sound absorbing 

material



Issues with Reactive Absorbers
• The tuning of such devices is half the story

• The other half is the size of such devices
– A tiny Helmholtz resonator and a very large one can have the same 

resonant frequency

• This does not mean that  they both have the same effectiveness

– The low frequency resonance of standing waves requires large reactive 
devices

• Bulky when tuned to low frequencies

– Once designed and tuned to a room, can not be used in another room 
with different geometry

– The higher order resonant frequencies of these devices might 
introduce undesirable  effects

• Mode splitting

– With not enough damping in the reactive
absorber, the target mode gets splitted

• Energy is not dissipated, just re-distributed
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Impedance of an Absorber
• Acoustic impedance of a surface

– Specific acoustic Impedance 

• Complex 

• Frequency dependant

• Semi-empirical  impedance models

• Measured impedance 

- Pressure-Velocity measurement

– PU probe

– In-situ measurement

– Pressure-Pressure  
measurement

– 2 microphone technique

• Impedance can be used as the
– Measure of sound absorption 

– Boundary condition in finite element model of the room
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Absorption Measurement

• Random incidence (reverberant field) measurement

– Measurement is done in a reverberant room with non-
parallel walls in which diffused sound field is generated
• Standards such as ASTM C423 are used

– Suitable for characterizing mid to high frequencies 
absorbers

• Normal incidence measurement

– Measured by placing the face of 
the absorber at one end of an 
impedance tube with planar, 1D wave propagation

• Standards: ISO 10534-2, ASTM E-1050 and JIS 1405-2

– Hardware and software for measuring the frequency-dependent 
absorption coefficient , reflection coefficient, and acoustic 
impedance

– Suitable for characterizing low-frequency absorbers



Active Acoustic Absorbers
• Reactive tuned absorbers are 

commonly used to add damping to 
LF modes
• Large in size
• Not re-tunable

• Active reactive absorbers
• A  powered subwoofer radiating in 

response to the measured pressure
• Nearly-collocated feedback control
• A small microphone as sensor
• Targets one (or two) LF mode(s)

• Size of a small, subwoofer
• Low power demand
• Robust, low-order, tunable and re-

tunable
• Placement 

– Where it couples effectively with the 
target mode(s)
• At a high pressure location of the target 

mode

• A true damping solution 
– Not equalization
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Figure 3.  Electronic feedback using two  controllers, tuned to the 35 Hz structural 

mode and the 1 
st 
 acoustic mode (55 Hz in the simulation). 



Simulation of a Small Room

• At low frequencies the modes are discrete
– The modal density increases with frequency
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Resonant Frequencies

Mode index         Frequency

L    W    H  Hz

1     0     0

2     0     0

0     1     0

1     1     0

0     0     1

1     0     1

2     1     0

3     0     0

2     0     1

0    1   1

54

107

116

128

141

151

158

161

177

183

2 modes in 

20 to 110 
Hz range

8 modes in 

110 to 184 
Hz range

Uncontrolled

controlled



A Test Room

noise source at wall 1,4
electronic bass trap at wall 2,3
room dims 18 x 9.7 x 13.6 feet
calculated modes 31, 39, 50, and
58 Hz

164



FE Modal Analysis

Resonant 

frequencies

1      31     Hz

2 39 

3 50

4 58.3

21

3 4



Corner 3

BLACK - CONTROLLER OFF
BLUE - CONTROLLER ON OPTIMIZED

RED - CONTROLLER ON OPTIMIZED FOR CORNER 2



Time Domain Data

BLUE - CONTROLLER OFF

RED - CONTROLLER ON 

MIC AT LISTENING POSITION



More Measurements
Blue: off        Red: on

H1_2,1(f)

H1_2,1(f)_c0

 80 15  20  30  40  50  60  70

58.0000

31.0000

32.0000

34.0000

36.0000

38.0000

40.0000

42.0000

44.0000

46.0000

48.0000

50.0000

52.0000

54.0000

56.0000

Frequency (Hz)

dB (V/V)

H1_2,1(f): 62.9883, 38.7717

H1_2,1(f)

H1_2,1(f)_c1

 80 15  20  30  40  50  60  70

60.0000

42.0000

43.5000

45.0000

46.5000

48.0000

49.5000

51.0000

52.5000

54.0000

55.5000

57.0000

58.5000

Frequency (Hz)

dB (V/V)

H1_2,1(f): 62.9883, 52.2342

H1_2,1(f)

H1_2,1(f)_c2

H1_2,1(f)_c1

H1_2,1(f)_c2

 80 15  20  30  40  50  60  70

58.0000

12.0000

15.0000

18.0000

21.0000

24.0000

27.0000

30.0000

33.0000

36.0000

39.0000

42.0000

45.0000

48.0000

51.0000

54.0000

Frequency (Hz)

dB (V/V)

H1_2,1(f): 62.9883, 34.2340

H1_2,1(f)

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

H1_2,1(f)_c1

 80 15  20  30  40  50  60  70

59.0000

14.0000
15.0000

18.0000

21.0000

24.0000

27.0000

30.0000

33.0000

36.0000

39.0000

42.0000

45.0000

48.0000

51.0000

54.0000

57.0000

Frequency (Hz)

dB (V/V)

H1_2,1(f): 62.9883, 38.7009



Software Tool 

• Dynamic signal 
analysis

– Uses the 
sound card
• Plays the 

excitation 
noise thru the 
speaker 
output

• Acquires the 
measured 
sound thru 
the mic input



Other Applications
• Vehicular 

applications
– Can be used both 

as a bass trap 
inside large 
vehicles (SUVs and 
minivans) to
• Abate boom noise

• Enhance the 
listening 
experience

• Passive absorbers 
for addressing LF 
modes in a vehicle 
would be too large 
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Other Applications

• Industrial application

– Acoustic resonance in 
an enclosed industrial 
combustor
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Damping vs. Equalizing
• Damping dissipates 

energy

– Flattening a peak in the 
frequency response is 
because energy is being 
removed from the system 
at that resonance
• Lowers ringing/lingering of 

sound at the target mode

– Damping is a parameter 
of the system

• Energy removal affects all 
the locations the same 
way

• EQ is a narrow-band 
volume control

– Flattening a peak in the 
frequency response is 
not because energy is 
being removed from the 
system at that resonance
• Does not affect the 

ringing/lingering of sound 
at the target mode

• Not effective in room 
with live music



Summary

• Rooms excessively amplify sound at certain frequencies
– Dictated by room size and geometry

• Standing waves (acoustic resonances/modes)
• Tonal lingering of sound 

• Passive tuned acoustic damping
• Helmholtz resonator, panel absorbers, quarter wave tube, etc.

• Active tuned acoustic damping
– Small, and effective way of adding  tuned damping to a room 

• Abates severe bass coloration 
– Tunable and re-tunable 
– Occasional and low power demand
– One (or two) controllers can be tuned to add damping to one (or two) acoustic 

mode(s) of the room
• Multiple controllers (circuits) are cascaded in parallel and share resources

– Other applications
• Vehicular and industrial

• Quantifying the  absorption of LF dampers
– Impedance tube measurement


